伯努利分布指的是对于随机变量X有, 参数为p(0
伯努利分布只有两种可能的结果,1(成功)和0(失败)。因此,具有伯努利分布的随机变量X可以取值为1,也就是成功的概率,可以用p来表示,也可以取值为0,即失败的概率,用q或1-p来表示。
概率质量函数由下式给出:px(1-p)1-x, 其中x € (0, 1)。它也可以写成:
成功与失败的概率不一定相等。这里,成功的概率(p)与失败的概率不同。所以,下图显示了我们之间比赛结果的伯努利分布。
这里,成功的概率 = 0.15,失败的概率 = 0.85 。如果我打了你,我可能会期待你向我打回来。任何分布的基本预期值是分布的平均值。来自伯努利分布的随机变量X的期望值如为:
E(X) = 1p + 0(1-p) = p
随机变量与二项分布的方差为:
V(X) = E(X²) – [E(X)]² = p – p² = p(1-p)
伯努利分布的例子有很多,比如说明天是否要下雨,如果下雨则表示成功,如果不下雨,则表示失败。